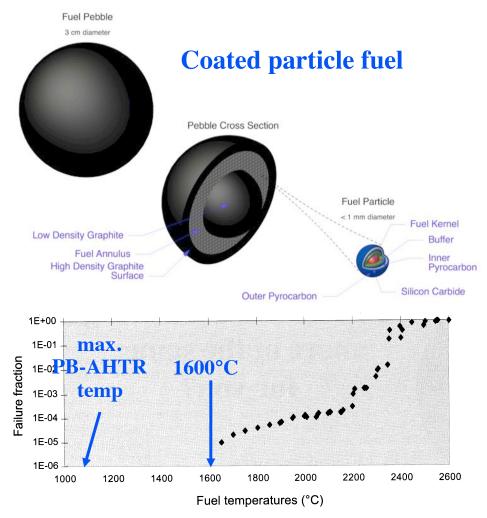

The Pebble-Bed AHTR Liquid Salt Cooled Reactor


Per F. Peterson Department of Nuclear Engineering University of California, Berkeley

Forum on Small and Medium Reactors (SMRs): Benefits and Challenges June 18, 2010

900 MWth, 410 MWe PB-AHTR

Advanced High Temperature Reactors (AHTRs) combine two older technologies

Fuel performance chart (Source: PBMR [Pty] Ltd.)

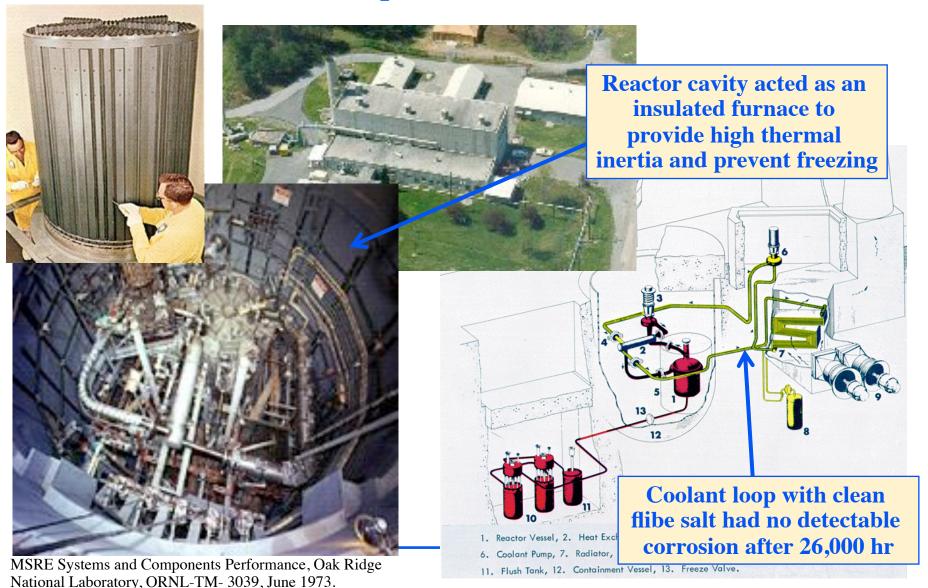
Liquid fluoride salt coolants

Excellent heat transfer
Transparent, clean fluoride salt
Boiling point ~1400°C
Reacts very slowly in air
No energy source to pressurize containment
But high freezing temperature (459°C)
And industrial safety required for Be

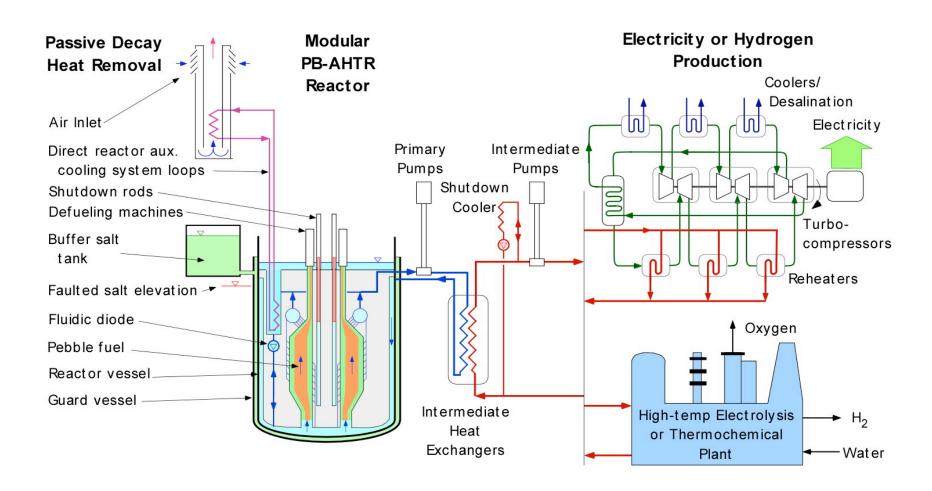
UC Berkeley

Liquid fluoride salts have fundamentally <u>different</u> properties than other reactor coolants

Thermophysical Properties* of S-PRISM, GT-MHR, and AHTR Reactor Coolants and Materials

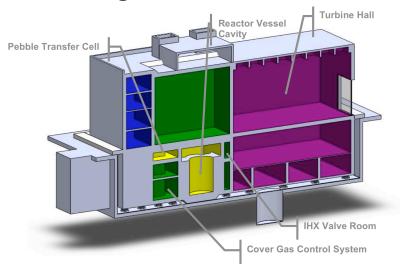

Material	T _{melt} (°C)	T _{boil} (°C)	ρ (kg/m³)	C_p (kJ/kg°C)	ρ <i>C_p</i> (kJ/m ³ °C)	k (W/m°C)	ν·10 ⁶ (m ² /s)
⁷ Li ₂ BeF ₄ (Flibe) 0.58NaF-0.42ZrF ₄ Sodium Lead	459 500 97.8 328	1430 1290 883 1750	1940 3140 790 10540	2.34 1.17 1.27 0.16	4540 3670 1000 1700	1.0 ~1 62 16	2.9 0.53 0.25 0.13
Helium (7.5 MPa) Water (7.5 MPa) Hastalloy C-276 Graphite	0 ~1350	100	3.8 732 8890 1700	5.2 5.5 0.43 1.90	20 4040 3820 3230	0.29 0.56 9.8 200	11.0 0.13

^{*}Approximate physical properties 700°C except the pressurized water data shown at 290°C for comparison; ρ = density, C_p = specific heat, k = thermal conductivity, ν = viscosity.

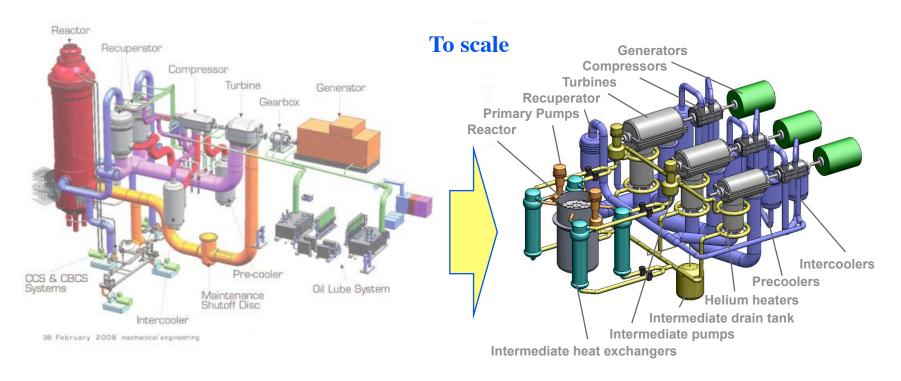

• High volumetric heat capacity provides high thermal inertia

- High power density, low pressure operation possible compared to helium cooled reactors
- High efficiency, compact primary loop equipment compared to water cooled reactors
- Transparent coolant, low thermal shock, low chemical reactivity, compact primary loop equipment compared to sodium cooled reactors
- But high freezing temperature still requires safety systems to prevent and control slowly evolving overcooling transients

The 8-MWth MSRE (1965-69) provided experience relevant to the development of an AHTR Test Reactor



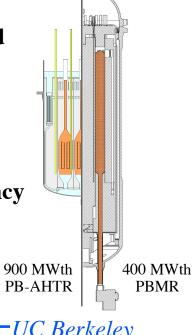
The modular PB-AHTR is a compact pool-type reactor with passive decay heat removal



AHTRs have a uniquely large number of robust safety barriers

- Ceramic TRISO fuel
 - Over 500°C temperature margin to fuel failure under transients and accidents
 - Immersion in chemically inert coolant with high fission product sorption capacity makes air/steam ingress impossible
 - Negative coolant void/temperature reactivity feedback
 - Passive natural-circulation decay heat removal
- Reactor cavity acts as a low-pressure, low leakage containment
 - No stored energy sources to pressurize containment
 - Large thermal inertia of cavity provides long time constant to primary coolant freezing
- Reactor citadel acts as a filtered confinement
- External event shell and turbine hall provide additional hold up

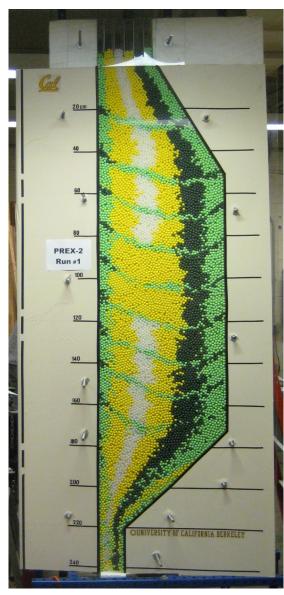
The PB-AHTR power conversion system design is derived from the PBMR/Mitsubishi design


168-MWe PBMR/Mitsubishi helium cooled HTR

410-MWe PB-AHTR liquid cooled HTR

Trade study needed for multi-reheat helium Brayton vs. combined cycle vs. supercritical-CO₂

Modular PB-AHTR Economics


- Lower energy costs than ALWRs
 - Primary loop components more compact than ALWRs (per MWth)
 - No stored energy source requiring a large-dry or pressuresuppression-type containment; reactor building volume 50% smaller than ABWR (per MWe)
 - Gas-Brayton power conversion 40% more efficient, turbine building 55% smaller than ABWR (per MWe)
- Much lower construction cost than SFR/IFR
 - ORNL top down, apples-to-apples cost study [1] concluded that the AHTR capital cost is 56% of the S-PRISM cost
 - Primary loop is much more compact (salt heat capacity is 4.5 times higher than sodium)
 - Low pressure containment (no sodium reaction)
 - Intrinsically higher temperature/power conversion efficiency
- Much lower construction cost than MHRs
 - All components much smaller, operate at low pressure, compared to MHRs

UC Berkeley

PREX-2 has confirmed radial zoning capability

- 15° sector PREX-2 experiment simulating 900-MWth annular core
 - 129,840 colored 1.28-cm diameter HDPE pebbles in 15° sector
 - Average of 9460 + 1260 pebbles in each axial layer
- For simplicity PREX-2 is a dry experiment (unlike PREX-1), so pebbles are added to the top of the core and removed from the bottom
 - Hydrodynamic forces on pebbles neglected; must be studied later

PREX-2 Run#1
UC Berkeley

The current Modular PB-AHTR plant design is compact compared to LWRs and MHRs

Reactor Type	Reactor	Reactor and	Turbine	Ancillary	Total	
	Power	Auxiliaries	Building	Structures	Building	
		Volume	Volume	Volume	Volume	
	(MWe)	(m^3/MWe)	(m^3/MWe)	(m^3/MWe)	(m^3/MWe)	
1970's PWR	1000	129	161	46	336	
ABWR	1380	211	252	23	486	
ESBWR	1550 [†]	132 [†]	166	45	343	
EPR	1600	228	107	87	422	
GT-MHR	286	388	0	24	412	
PBMR	170	1015	0	270	1285	
Modular PB-AHTR	410	105	115	40	260	

[†] The ESBWR power and reactor building volume are updated values based on the Design Certification application arrangement drawings.

The current UCB thermal hydraulics test program has 3 facilities

PREX

Pebble recirculation IET Match Re, Fr, pebble/salt density ratio w/ water

S-HT²

Salt heat transfer SET Match Re, Fr, Pr, Gr w/ Dowtherm A

PRISM

Passive shutdown rod IET Match Re, Fr, rod/salt density ratio w/ sugar water

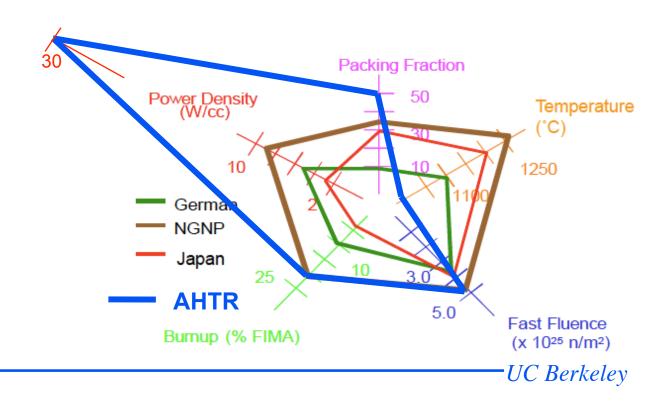
Dowtherm heat transfer oil will be used as the principal simulant fluid for AHTR IET/SET experiments

Scaling parameters to match Pr, Re, Gr, and Fr for flibe and Dowtherm A

Flibe Temperature	600	650	700	750	800	850	
Dowtherm A Temp	63	82	104	129	157	191	
Length scale	l_m/l	0.52	0.51	0.49	0.46	0.44	0.41
Velocity scale	u_m/u	0.72	0.72	0.70	0.68	0.66	0.64
ΔT scale	$\Delta T_m/\Delta T$	0.30	0.30	0.30	0.30	0.29	0.29
Heat conductivity	λ_m/λ	0.14	0.13	0.13	0.12	0.12	0.11
Ther. diffusivity	α_m/α	0.37	0.35	0.33	0.31	0.28	0.26
$\beta \Delta T$	$(\beta \Delta T)_m / \beta \Delta T$	1.00	1.00	1.00	1.00	1.00	1.00
$\gamma \Delta T$	$(\gamma \Delta T)_m / \gamma \Delta T$	0.81	0.94	1.06	1.13	1.13	1.04
$\kappa \Delta T$	$(\kappa \Delta T)_m / \kappa \Delta T$	-0.84	-0.86	-0.89	-0.92	-0.95	-0.99
Pumping power	$P_{p,m}/P_p$	5.2%	5.0%	4.2%	3.4%	2.8%	2.1%
Heating power	$P_{q,m}/P_q$	2.1%	2.1%	1.9%	1.7%	1.5%	1.3%

•Note that Pr, Re, Gr and Fr can be matched at < 2% of prototypical heater power

•Water can be used for hydrodynamics experiments


The new UCB Compact Integral Effects Test (CIET) facility can be compared to the INL Semiscale facility

- Semiscale simulation of PWR LOCA
 - 1:1 height
 - 1:1705 flow area
 - 1:1705 power (2 MW)
 - 1:1 time
 - prototype temperature / pressure
- CIET simulation of the PB-AHTR LOFC/ ATWS
 - 1:1 effective height (1:2 actual)
 - 1:190 effective flow area (1:756 actual)
 - 1:190 effective power (1:9000 actual, 100 kW)
 - $-1:(2)^{1/2}$ time
 - reduced temperature / pressure
 - reduced heat loss
 - small distortion from thermal radiation

PB-AHTR fuel development can use existing NGNP fuel fabrication and qualification infrastructure

- PB-AHTR fuel operates at high power density and heavy metal loading, but lower temperature, than NGNP fuel
- Rapid fuel testing is possible due to short time required for LEU and LWR-TRU fuel to reach full discharge burn up

Conclusions

- Fluoride-salt cooled reactors have unique safety, efficiency, and economic potential
- AHTR development involves a number of different experimental programs
 - Integral effects tests
 - » CIET validation transient thermal hydraulics models
 - » PREX validation pebble recirculation models
 - » ATR/HFIR fuel performance
 - Separate effects tests
 - » Many with simulant/prototypical fluids
 - Component tests
 - » Functional tests w/ water, CTF tests w/ salt)
 - Test reactor tests
 - » MSRE-size test reactor facility